首页> 外文OA文献 >Magnetic nanoparticles for applications in oscillating magnetic field
【2h】

Magnetic nanoparticles for applications in oscillating magnetic field

机译:磁性纳米粒子在振荡磁场中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub–micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose.Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica–coated and PNIPAM–coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM–coated Fe3O4 was peculiarly high, and the heat loss mechanism of this material remains to be elucidated.Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7–hydroxycoumarin–3–carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.
机译:酶催化和热化学催化都是重要的工业过程。但是,每个过程的热要求通常使它们相互排斥:热化学催化需要使酶变性的高温。该项目的长期目标之一是设计一种热催化系统,该系统可以与酶系统一起用于原位催化一个罐中的反应序列。该系统对于许多应用将是有用的。将生物质转化为生物燃料和其他商品。所需的热催化系统将需要提供足够的热能以催化热化学反应,同时保持酶免受高温变性。已知磁性纳米颗粒通过包括磁滞和弛豫损耗的机制在振荡磁场中产生热量。我们设想将这些磁性纳米粒子用作嵌入亚微米尺寸介孔载体中的局部热源,以在空间上将粒子与酶分离。在这项研究中,我们着手寻找足以满足此目的的磁性材料和仪器条件。磁铁矿因其高磁化值,对粒度,形状,功能化的综合控制而被选为本研究中的第一类模型磁性材料并证明了生物相容性。我们的实验设计在一系列理论计算的指导下进行,这些计算提供了有关粒径,粒径分布,磁场,频率和反应介质的影响的线索。合成了理论上最佳尺寸的材料,进行了功能化,随后研究了它们在振荡磁场中的作用。在我们的条件下,聚集的材料例如二氧化硅涂层和PNIPAM涂层的氧化铁表现出最高的发热量,而嵌入在MSN中的氧化铁和中孔氧化铁的整体发热量最少。值得注意的是,PNIPAM包覆的Fe3O4的比损失功率特别高,并且该材料的热损失机理尚待阐明。由于热催化是该项目的长期目标,因此我们还研究了热催化的效果。振荡磁场系统合成7-羟基香豆素-3-羧酸。与室温控制相比,发现在具有高热响应的磁性颗粒的存在下施加振荡磁场可以有效地提高香豆素衍生物的未催化合成的反应速率。

著录项

  • 作者

    Peeraphatdit, Chorthip;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号